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SECTION 1

INTRODUCTION

Surface-to-surface, surface-to-air and air-to-surface tacti-

cal missiles of interest to the U. S. Army are being required

to engage in increasingly demanding scenarios. The engagement

requirements are expected to get even more exacting during the

next decade [1]. These requirements can only be met with major

* improvements in guidance laws. The most difficult part of tacti-

cal missile guidance is the terminal-homing phase. Terminal

homing generates missile commands to direct the warhead on a

desired target or a specific region of the target.

Proportional navigation (pronav) has been used extensively

for terminal guidance because of its success in conventional

ground-to-ground and ground-to-air engagements. In addition,

pronav is implemented by directly commanding missile acceleration

components proportional to outputs of a gimballed seeker.

Several studies have shown that pronav is incapable of

meeting the guidance requirements in the late 1980's and beyond.

The three main reasons why pronav will not be acceptable for

future missiles are: (1) improved accuracy requirement in

conventional scenarios, (2) more demanding future engagements

(e.g., guidance of anti-tactical ballistic missiles) and (3)

increased stress on inexpensive seekers, gyros and accelerometers

(e.g., strapdown seekers). Therefore, there is a need to develop

advanced estimation, control and signal-processing techniques

for Army tactical missiles.

S
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1.1 SUMMARY OF APPROACH

3The missile guidance problem is solved by decomposing it

into three separate and simpler problems (Figure 1-1):

1. Missile guidance with known missile and target
dynamics,

2. Estimation of target dynamics, and

3. Adaptive autopilot design.

The missile guidance solution is obtained using the singular

perturbation extension to the optimal control solution. Target

trajectory and dynamics are estimated by fitting an Autoregressive

Moving Average (ARMA) model to the available measurement and

updating the model parameters recursively in time. Stabilization

of the missile with respect to random disturbances and tracking

of the nominal trajectory provided by the optimal control solution

are achieved by an autopilot based on an adaptive lattice algorithm.

TARGET

ACUTOSmiss ILE SEEKER

TUATS DYNM~ICS

SENSORS

GUIDANCESTT
AUTOPILOT WA STATO

I UIDANCE A

CONTROL LAI

1SEEKER/SENSOR ACCURACY
MDELS

• TARGET CAPABILITYMISSILE CONSTRAINTS

Figure 1-1 A Modern Control-Based Missile Guidance Law
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1.2 RESULTS

1.2.1 Advanced Guidance Laws for Surface-to-Air Missiles

A singular perturbation guidance law has been developed

k for medium-range surface-to-air missiles [2]. This guidance

law is a significant extension of a previously developed guidance

law for short-range missiles (3]; in medium-range intercepts,

the problem of energy management should be addressed in addition

- to homing guidance.

The mathematical formulation has been simplified by intro-

ducing separation of time scales. While time constants for

medium-range intercepts are significantly different from those

. of short-range intercepts, the principle of time-scale separation

is still applicable. The resulting simplified optimal control

formulation requires solution to a set of nonlinear algebraic

*equations and to an initial value problem, all well-suited for

on-board real-time implementation.

1.2.2 Target Trajectory Estimation

A recursive algorithm for estimation of ARMA model parameters

from noisy samples has been developed. Application of this

algorithm to parameter estimation problems has exhibited its

fast convergence and unbiasedness in the presence of noise [4],

even with short data records. The algorithm has two versions,

a Recursive Maximum Likelihood (RML) form and a Recursive

Prediction Error (RPE) form, both of which posses a parallel

structure that makes them highly suitable for parallel-processing

implementation.

1.2.3 Adaptive Autopilots

Lattice-form algorithms have been developed for fast, recur-

sive identification and control of time-varying systems [5-7].

These algorithms have excellent numerical properties and a modular

structure that makes them suitable for on-board real-time

*3
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implementation. Since the model parameters and the control

input are updated at each measurement point, recursive lattice

algorithms respond to changes in system dynamics faster than

conventional, nonrecursive algorithms. This advantage makes

recursive lattice algorithms a natural choice for incorporation

in adaptive autopilots. They enable stabilization of the missile

with respect to random disturbances with short time constants

and tracking the nominal trajectory indicated by the optimal

' control solution.

1.3 REPORT ORGANIZATION

This report is organized as follows: Section 2 summarizes

the missile guidance problem, Section 3 develops advanced guidance

laws, and Section 4 describes the algorithms for target dynamics

estimation and adaptive autopilot. Conclusions are given in

Section 5.
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SECTION 2

MISSILE GUIDANCE PROBLEM DISCUSSION

The missile-target dynamics are highly nonlinear partly

because the equations of motion are best described in an inu.tlal

system, while aerodynamic/control forces and moments are repre-

* sented in missile and target body axis systems. The linearization

of the nonlinear equations of motion is complicated by fast

- changes in relative target and missile velocity vectors. There-

fore, simplified estimation and control procedures for linear

systems cannot be applied.

Proportional navigation (pronav) and other conventional

guidance laws have been developed using classical control methods,

based primarily on linear system formulations. It was alp

necessary to divide the overall problem into guidance and .

pilot design to reduce the order of the problem. Since the

missile guidance problem is highly nonlinear, time varying and

of high order, classical methods are difficult to extend for

improved guidance laws.

The modern control theory formulation can treat nonlinear

systems with multiple inputs and multiple outputs. Modern control

*- can also handle trajectory constraints (e.g., stability and

energy management) and terminal requirements of small miss

distance.

In general, tactical missile guidance has three phases,

" boost, midcourse and terminal. The boost and midcourse phase

involve energy management, threat avoidance and navigation.

The terminal phase is described by the seeker locked onto the

target (or a region on the target). Guidance commands in the

5
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terminal phase are generated to intercept the target. The ter-

minal phase is the most demanding part of missile guidance.

Our research is focused on improving missile performance during

this critical phase.

2.1 MISSILE SUBSYSTEMS

Figure 2-1 shows important missile subsystems which impact

guidance and control laws. Missile dynamics are driven by aero-

dynamic and propulsion system characteristics, control inputs

and the ambient conditions. Guidance commands must be derived

from sensor and seeker outputs. Sensors measure missile inertial

states, usually angular rates and translation accelerations. The

, seeker measures components of target position and velocity rela-

tive to missile fixed-axis system.

The seeker derives information about the target using infra-

red, laser, radar or other techniques and is often a major part

of the missile cost. The seeker is subject to jamming and decoys.

Good signal-processing techniques are often needed to minimize

the degradation of target information due to countermeasures.

STANDARD MODEL FOR TARGET SI'iIFIED S;'
OR A I E1T - -- -------------- DYNAM I CS TAP T MOX-,E

NONSTP,-PD CONDITIONS,~ ,-
CONTROL AERODYNAMICS MISSILE MEASUREMENTSJ MEASURED OLT S".~~~ COTO - SENSORS

ACTUATORS CONTROL PROPULSION KINEMATICS MISSILE - SEEKER

INPUTS SAE

I- GUIDANCE/i~i L -- CONTROL -

LAW

Figure 2-1 Major Missile Components
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From the guidance viewpoint, seekers are either passive or

active. Passive seekers measure the two components of line-of-

£sight rates or angular locations of the target in the missile
axis system. Active seekers, in addition, provide measurements

of range or range rate. Passive seekers are highly desirable

because of lower cost and minimum vulnerability to jamming.

Each component in the overall model exhibits strong non-

linear behavior. Missile aerodynamics and propulsion models are

nonlinear, particularly because of fast changes in speed, angle-

of-attack and altitude. Sensors also have large nonlinear errors

*l like scale factors and bias. Seeker outputs follow various

trigonometric relationships causing additional nonlinear behavior.

Table 2-1 shows typical actuator errors. These errors produce

*additional nonlinearities in missile dynamics.

2.2 PAST APPROACHES FOR MISSILE GUIDANCE

*Many guidance laws have been used for the terminal phase

in the past. Pursuit and proportional navigation (pronav) are

the two most common techniques. More recently, pronav has been

-. used almost exclusively in advanced missiles. Table 2-2 compares

five classical approaches to missile guidance. Pronav will

be our baseline technique because it has been most successful

in previous work.

In pronav, the commanded missile acceleration is:

gq a =A ro (2.1)~mc An t ' .
me ngo

where r is the range, o is the line-of-sight rate, t is
go

- the time to go and An is the navigation gain. In conventional

pronav applications, tgo  is approximated by

tgo =-r/r , (2.2)

such that

7
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Table 2-1. Actuator Errors

EkOR MODEL EFFECT

u (s) - Reduces controller bandwidth
D y u(s) y or - May cause instability in high gain

controllers:: U uceTS

Bias u u- b - Produces steady state errors in
commanded acceleration

Hysteresis Reduces controller bandwidth
(BaCkldh) u/;My produce limit cycling

/ uc

Bending or - Reduces control effectiveness at
FluLter large comanded acceleration

U C

and

U U c + randoin

deflection

u control deflection; uc ' conwinded control deflection

Table 2-2. Comparison of Classical Guidance Laws

GUIDANCE LAW ADVANTAGES DISADVANTGES

Comr,and-to-Line-of- No teinal seeker required * Very inaccurate aganst mo.4r:g
Sight Guidance targets and with winds

* Data link required

Pursuit * Noise insensitive * Inaccurate against mcving tar-
9 Easy to use with strapdown seekers gets and with winds

. Proportional Accurate against constant velocity * Inaccurate against accelerating

targets targets
* Stability is sensitive to noise

Pursuit + Pronav Between 2 and 3 in terms of accuracy * Between 2 and 3

Dynamic Lead * Between 2 and 3 in terms of accuracy 9 Between 2 and 3
e Easy to use with strapdown seekers a Stability problems if transiti r,

to pronav occurs wten signifi-
cant noise is present

8
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* Navigation gain of between 2 and 4 is considered desirable.

To achieve this navigation gain, both a and r should be

used. a is available from passive as well as active seekers.

r, however, is measured only by active seekers. Conventional

implementations of pronav with constant navigation ratio, there-

fore, require active seekers. The variation in navigation ratio

for stationary or constant speed targets is, nevertheless, small

even with passive seekers.

Characteristics of pronav guidance laws are discussed in
Appendix A. Appendix A indicates that errors occur in pronav

guidance because of the following:

1. Instability of pronav guidance law prior to impact,

2. Target maneuvers and variations in target speed,

3. Variations in missile speed,

4. Missile dynamics and combined missile/autopilot
dynamics, and

5. Sensor errors and seeker saturation.

Modern control and estimation methods based on advanced guidance

algorithms can overcome the problems indicated above. The next

section discusses the general modern control theory formulation.

2.3 OPTIMAL CONTROL SOLUTION

Three cases for optimal control are considered: (1) known

target maneuvers and missile states, (2) known-target maneuvers

but estimated missile states and (3) evasive intelligent targets.

The resulting numerical problems are shown for each missile

guidance solution.

9
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2.3.1 Dynamics

The dynamics of a missile-target engagement may be described

by dynamic equations of the form:

x = f(x,u,aT) x(O) =x

0 : t tf , (2.3)

where x is the state vector consisting of: (1) components

of relative position, (2) components of relative velocity, (3)

missile orientation angles, (4) missile angular rates, and (5)

actuator and sensor states. u is the vector of control surface

deflections and aT is the target acceleration vector.

2.3.2 Optimal Control Solution With Known Target Maneuvers and
Missile States

The optimal control solution to missile guidance is based

on minimizing the following function of states and inputs

J S(x(tf)) + f (x,u,aT dt . (2.4)

The first term in Eq. 2.4 defines terminal requirements for

target intercept. This term decreases as the relative terminal

distance between the missile and target decreases. Requirements

for relative terminal angular orientation for improved charge

detonation may also be included in S(x(tf)). The second term

specifies a preferred missile trajectory. This term may be

used to manage energy, to satisfy seeker constraints or simply

to minimiz3 flight time. Minimization of flight time, for exam-

ple, is achieved by setting C to unity and S(x(ff)) = 0.

The final time, tf, may be constrained but is usually free

in missile guidance problems.

10



The optimization problem is solved by using a Lagrange

variable X and a Hamiltonian ff. The equations leading to

the optimal solution are:

,f = £(x,u,aT) + T f(x,u,aT) , (2.5)

3) T (fT X (2cT as

ax = - a a ') X(tf) = a- (2.6)
andT
and\l / a = + C A= o , (2.7)

Q~ (w) ( ax),

H(tf) = 0 . (2.8)

Eqs. 2.3 and 2.6 are coupled. The control is obtained from Eq.

2.7 and the final time is obtained from Eq. 2.8. The initial

condition is defined for states x and the final condition for

variables X. Therefore, the computation of u requires solu-

tion to a two-point boundary value problem (TPBVP) represented

by Eqs. 2.3 - 2.8. The optimal control can be determined if

xo  and aT(t) are known and the cost functional is defined.

Therefore, with known initial conditions and target maneuvers,

modern control requires a TPBVP to be solved for missile guidance

commands. The missile guidance problem becomes more complex when

the initial condition must be estimated from seeker outputs and

* the target may perform evasive maneuvers.

2.3.3 Optimal Control with Noisy Measurements and Estimated

Initial State

Table 2-3 shows outputs of passive and active seekers.

Clearly not all states are measured. The measurements are also

noisy.

A state estimator (e.g., Kalman filter) is required to

determine the current state vector needed for optimal missile

guidance. The extended Kalman filter formulation may be used.

For n states, n differential equations are required for the

_1
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Table 2-3. Output of M!issile Seekers

KIND OUTPUT RELATIONSHIP TO MISSILE STATES

PASS I VE Two Line-of-Sight Angles Ratio of Lateral Target Position Components

(Infrared, Optical, to Range (in Missile Axis Systms)

Passive Radar) Two Line-of-Sight Rates Time Derivatives of Above

ACTIVE Range Sum of Square of Relative Position Components

(Active Radar) Range Rate Time Derivative of Range

state estimate. In addition, n(n+l)/2 equations must be propa-

gated for the covariance matrix and the Kalman gain. Since the

number of equations for the covariance matrix is much larger than

the number of equations for the state estimate, there is a

significant payoff in simplifying the covariance equations.

In linear systems, the error covariance matrix is indepen-

dent of the measurements. Therefore, the estimation error does

not depend upon the applied input. However, in nonlinear systems

the measurements affect estimation accuracy. The error in state

estimates may, therefore, be reduced by appropriate application

of inputs. This leads to a dual control formulation, where the

inputs provide guidance as well as improvement in estimation

accuracy. The exact solutions to these problems are quite

complex and simplifications are necessary for real-time

implementations.

2.3.4 Optimal Control With Target Evasive Maneuvers

In the previous two sections, we assumed that future target

acceleration time trace, aT, is known. If the target is

capable of performing evasive maneuvers, the future target

acceleration depends upon the missile flight path. At any time

point, the target will perform the most desirable maneuver to

void the missile.

The assumption of target evasive maneuvers leads to a

differential game formulation. The target will determine its

12
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commanded acceleration by maximizing the same or similar penalty

functional that the missile wants to minimize. The optimization

Uproblem may be stated as

max min J .(2.9)

aT u

This optimization problem requires the solution to Eqs. 2.9 - 2.8

and the following equation:

a= 0 . (2.10)
'I T

Note that the resulting TPBVP is even more difficult to solve

-. than the one with known target maneuvers due to the additional

constraint given by Eq. 2.10.

2.3.5 Numerical Requirements for Optimal Guidance Laws

Figure 2-2 is a flowchart for a missile guidance law based

on modern control theory. Note that a state estimation step is

required. In addition, the guidance law needs more information

than with pronav.

Table 2-4 shows the various optimal control formulations

for missile guidance and the resulting numerical procedures

* needed for their solution. The numerical algorithms are diffi-

cult to implement. Therefore, simplifications which do not

* compromise accuracy are needed for effective missile guidance

laws.

Table 2-5 indicates possible approaches for simplifying

the numerical problems associated with the optimal control

solution. Because the basic missile-target dynamics are non-

*linear, each of these simplifications must be developed specifi-

cally for the missile guidance law. A singular perturbation

simplification technique has already been developed. This

13
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Figure 22. A Moern Con rlsedMsieGiac a

Table 2-4. pialCnto Formuation or MsilTuiac

Migre 2ate onrnt aont ree-Baeda iesith Gutid tanteLa

Kalimn Filter Prp t*n of Differertial
Equations; Comfputation of Deriva-

Noisy Seeker Feasr:~nts DtlDfernilGme(nnw ________________

Dual Control Stoct-astic Two-Point Bo~nda~y

Differential Game (Known State) Difficult Boundary Value Protlem

Targt Easiv Kae~vrs Dal iffeental ame Unkown Difficult Stochastic Boundary
state)Value Probla and Kalman Filter
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Table 2-5. Simplification of Optirmal Control
N 'umeric'al Procedures

%U0CRICAL PROCEDURES S LIFICATIO i/AFPROXI TION RESULTING NUMEPICAL PROBLEM

Two-Point B9,ndsry Val-e * Lineorization 6 Initial value prcblem

Protlem with Path Constraints * Separation of time scales * Algebraic problem
(Optimal Control) (singular perturbation) * Partially coupled solution

Propagation of Differential * Simplify Kalman gain or compute e Reduced number of differen-
Eq.ations; Computation of it off-line tial equations
Derivatives * Time scale separation * Partially coupled solution
(Kalman Filter)

Stochastic Two-Point Boundary * Define a class of test inputs * Convert to an optimal con-
Value Problem trol problem
(Dual Control)

Difficult Boundary Value * Parameterize guidance law e Direct solution for missile
Problem 0 Reachable sets guidance and target evasion
(Cifferential Game) * Cormand constraint guidance e Simplified optimal control

solution

4'- Difficult Stochastic Boundary Define a class of test inputs . Corvert to an optimal con-
Value Problu and Kalman trol solution
Filter
(Dial Differential Game)

technique is described in (3]. The singular perturbation guid-

ance algorithm for anti-tactical ballistic missiles (ATBMs) is

shown in Section 3. The next section (Section 2.4) contains a

comparison of optimal and pronav guidance in one particular

ATBM scenario.

2.4 COMPARISON OF OPTIMAL AND PRONAV GUIDANCE

We compare miss distances for an anti-tank missile and

* for an ATBM due to fore-aft target acceleration. The two

scenarios are summarized in Table 2-6. The ATBM has higher

speed and faster dynamic response. The pronav gain in each
case is 3.

Miss in pronav occurs because of the inability of the mis-

sile to track slowing ballistic missiles and in the latter part

of the flight due to missile instability. The target tank, in

the first scenario, increases miss distance by stepping on the

brakes.

15
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Table 2-6 Description o~f the Engagement Scenario

SCENARIO!I SCENARIO 11

ANTI-TANK MISSILE ANTI-TACTICAL BALLISTIC MISSILE

Missile Speed

(ft sI).... S00 4,000
Target Speed

(ft s- I) ... 40 10,000

q ....... 450 200

qla, ........ .30305e
....... 0.5 0.5

3 30
Aft .. . .. . 3 3

0.8

0.6/

DISTANCE
(ft) 'PRONA

0.4/

0.2

-01 OPTIMAL

0.2 0.4 0.6 0.8 1.0

TARGET ACCELERATION (g's)

Figure 2-3 Comparison of Pronav and Optimal Guidance
Laws for an Anti-Tank Missile
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Figure 2-3 shows miss distance as a function of tank decel-
eration (the maximum deceleration is expected to be 0.5 g). The

effect of instabilities is significantly amplified in the pre-

sence of noise. Therefore, the control input is often set to

zero in the unstable region. If the control input is set to

zero half-way through the instability, the miss distances of

Figure 2-3 will approximately double.

Similar plots for the ATBM engagement are shown in Figure

2-4. Most of this miss distance results because pronav does

not use the entire missile capabilities. An optimal control

law gives miss distance as shown by the solid line. The op

control law is able to achieve this improvement because it starts

applying acceleration early in the trajectory (Figure 2.5).

The results presented in this section show that in one

ATBM engagement scenario, the pronav guidance cannot meet

performance requirements, while singular perturbation does

adequately well.

20 I

14ISS
I

I
qiss I

DISTANCE I
(ft) ,PRONAV

10 I• I
/

/
/

5 /
6 /

/
/

/
/

OPTIMAL
10 20 30

BALLISTIC TARGET DECELERATION (gs)

Figure 2-4 Comparison of Pronav and Optimal Guidance
Laws for ATBM
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750
ACCELERAT ION
o (t S-2

fPRONAV OPTIMAkL 250

1.0 0.8 0.6 0.4 0.2 0
TIME-TO-GO (SEC)

Figure 2-5 Comparison of Missile Acceleration Profiles
for Pronav Guidance and Optimal Guidance
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SECTION 3

ADVANCED GUIDANCE LAWS FOR SURFACE-TO-AIR MISSILES

This section describes a model for an advanced aircraft

missile and develops an optimal control formulation for improved

guidance laws. A singular perturbation extension to the optimal

control solution is presented. The time constants selected in

the singular perturbation method are based on physical variables

as shown later. The resulting solution involves a set of non-

linear algebraic equations. Two formulations have been used --

one based on the kinematic state and the other using the energy

state.

3.1 MISSILE MODEL
4 4. 4.

With Xm# vm and am, missile position, velocity and

aerodynamic acceleration vector, respectively, the missile

dynamic model in the Cartesian coordinate system is

Xm =v (3.1)

4. 4.
vm am  . (3.2)

T (') TTxm = (xyh) , vm = (uv,w) and am = [ax,a y,a T The
* acceleration component along the velocity vector is defined,

because missiles in Army inventory do not .have thrust control

(the formulation can be modified, if necessary).

1 (T .D)

vmam (3.3)

or

19



i" (T-D)V
u ax + v ay + w az - m (3.4)

m is a function of time and its time history is known. Thus,

we can consider ax, ay and az  as our control variables with

the constraint of (3.4).

To simplify the derivation of the guidance law, we convert

the velocity equations into a total speed and two flight angle

equations. Equations 3.1 and 3.2, thus, become

x = V cos y cos 4 , (3.5)

y = V cos y sin 4 , (3.6)

h = V sin y , (3.7)

V = (T-D)/m - g sin y , (3.8)

S= L sin a/m V cos y , (3.9)

where

y = (L cos a - mg cos y)/m V . (3.10)

. and y are flight path angles in the horizontal and the

vertical planes (see Figure 3-1). L sin a and L cos a are

lift components in the x-y and vertical planes, respectively.

Thus, the two control variables are given explicitly in this

formulation.

The thrust time history is predefined. The drag is written

as follows

D (h) V2s C (3.11)2 pA)

C A = Ao + CAlca+ 2 (3.12)

1 2q = p(h) . (3.13)

at is the total angle-of-attack and the density p is a function

20
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h

L sin a

I -I
I

Figure 3-1 Axis System for Missile Dynamics

of altitude. The total angle-of-attack is related to total lift

as follows

L 1p(h) V2 sCN . (3.14)

The target position velocity and acceleration vectors are re'aled

to each other

4. 4.XT =V T (3.15)

SvT =a~ (3.16)T T

. The final condition for missile intercept is

xm(tf) = xT(tf) (3.17)

where tf is free. The optimal control solution will be based

on the minimization of

21
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ii  f
J X (xm,vm,am) dt (3.18)

Typically C is a function of drag, total speed, energy loss

rate and total flight time. If the optimization criterion were

minimum time, the performance index would be

C = 1 (3.19)

and for the minimum energy loss solution

C= D V (3.20)

In our discussion, it is assumed that XT(t) is known,

based on an estimate of the target motions.

3.2 OPTIMAL SOLUTION

The solution to the optimal control problem is obtained

by defining a Hamiltonian as follows. The Lagrange multiplier

method for the optimal solution Rives the following Hamiltonian

for this problem

H =X V cos y cos + X V cos y sin € + Xh V sin y
x h

+ Xv[(T-D)/m - g sin y] + X L sin a/(mV cos y)

+ X (L cos a - mg cos y)/(mV) + C . (3.21)
Y

Xx' Xy' Xh' XV' XV X y are the various Lagrange parameters

and C is a general cost functional. Since the Hamiltonian

does not depend on x or y

Xx = y 0 (3.22)

22
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The other four Lagrange variables are

h -H/3h , Xh(tf) free , (3.23)

-v0f -aH/ V , XV(tf) = 0 , (3.24)

= _X(tf) = 0 , (3.25)

=! f -ay ', Xy(tf) =f 0 (.6i. Y • f3 26

The optimality conditions give

DH 9-D+X sin o/(mV cos Y)

+ A cos a/(mV) + - = 0, (3.27)
K Y

_H X L cos a/(mV cos y) - X L sin a/(mV) f 0. (3.28)
I Y

Note that neither D nor £ should depend on a. Thus,

tan a (3.28)Xy~~~ cos y "( .8
Y

Since the final time is free,

H(tf) = 0 . (3.30)

* Note that H is an explicit function of time through T and

m. Thus, H is not zero throughout.

The unknowns are Xx, Xy, L and a and the time histories
of Xh, V X0, and AX. Thus, six forward and four backward
differential equations need to be solved in a two-point boundary
value problem (TPBVP).

23
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3.3 TIME-SCALE SEPARATION

The six missile dynamics equations are scaled as follows

I" r d(x/r)r xr= Cos y Cos * , (3.31)
v dt

~r d(y/r)
V dt = cos y sin (3.32)

ihmax d(hlh max )
h dm = sin y • (3.33)

V dt

The time constant associated with the total speed equation is

.• determined by substituting for a in terms of lift in the drag

equations (Eqs. 3.11 - 3.14)

dV [C1A CA 2L
dV _T 1 SCL w. L + (3.34)
dt m R[QSCA+ CN 2 V

The total speed equation has two parts. The first term is known

and can be large when the thrust is on. The second term depends

on flight condition and control input and, thus, controls the

dynamics of the total speed equation. The drag term varies from

fractions of a g to a few g's in most medium-range missiles. The

gravity term is always less than one g (because w/V 1). Thus,

dividing by g the right-hand side becomes of unit order. The

time constant associated with this equation could change if the

missile drag was larger by a factor at high angle-of-attack.

Y _. q (T-D) w(.5

gVdt/ - mg (335
Similarly, a time constant can be developed for the total

energy equation

F2

E 2g
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dE (T-D) V . (3.36)
dt mg

Since D is of order of mg, the nondimensional equation for

E is

V 1dE 2 (T-D) (337)
dt +2gh mg

Thus, the total energy equation has essentially the same time

V, constant as the speed equation.

The time constants associated with * and y are obtained

as follows

mV dO L sina (3.38)
Lmax dt Lmax cos Y

mV dY L mg Cos Y(3.39)
L dt Lmax max max

Thus, the time constant associated with flight path angles is

V/amax . (3.40)

The missile lateral acceleration commands are generated by the

autopilot. The particular separation of time scales for short-
range missiles was discussed previously. Table 3-1 shows that

the time scales for missiles with significant cruise phase

(medium-range intercepts) could be significantly different.

A clear separation of time scales associated with various states

* is clear.

Slowest: position components, x and y, and total

speed equation,

Slow: altitude, h,

Fast: flight path angles, and

Very fast: autopilot states.

25



Table 3-1 Time Constants Associated With Various States
During Midcourse

COMPONENTS TIME CONSTANT VALUE (s)

Position X. rV 40
y r/V 40
h h max IV 6

Velocity Total speed (or energy) V/g 50
Flight path angles V~mx1.67

Accelera- L Autopilot 0.6 to
tion Orientation time constants 0.05

r 20,000 m, hmx =3,000m, V 500 msec -1 , a max =30 g's

DESIRED FLIGHT PATH
ANGLE IN T7HE ALTITuDE :DY'o%ICS

HORIZONTAL PLANE
DESIRED FLIGHT PATH A*NGLE
IN THE VERTICAL PLANE

FLGTPT YAIS

AUTOPI LOT

'4
CONTROL SJ~rACE DEFLECTI-ONS

Figure 3-2 Schematic of Singular Perturbation Guidance
4 Logic for Midcourse Phase
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Note that the distribution of time scales is different from

that realized for the end-game problem.

The approach to obtain guidance commands using singular

perturbation methodology during midcourse phase is shown in

Figure 3-2.

3.4 SIMPLIFIED OPTIMAL CONTROL SOLUTION BASED ON SEPARATION
OF TIME SCALES

We will solve the guidance problem in four parts, each

part corresponding to one of the time scales.

3.4.1 Slowest Time Scale

x, y and V are the slowest variables. Since h, 0
and y are faster, those equations may be considered to be in

equilibrium. Therefore (the variables in the slowest time scales

are denoted by superscript "1"),

y = = 0 , (3.41)

L1 = mg. (3.42)

Thus, the Hamiltonian simplifies to

H1 = x1 V1 cos *1 + X1 V1 sin 1 + Xi(T-D)1 /m + C.(3.43)
x y •

The adjoint equations for Xh and X, give

aH 0 XVD 1  +
ah - h rn *h

+ (x1 Cos 1 + sin 0l)(-g/vl) (3.44)+(x co y

UH -X1 V1 sin 1 + Xl VI cos 1I (3.45)x y
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because
+V 1f V2 -2gh

Eq. 3.45 gives

tan X- 1 (3.46)y x

Since and Xy are known to be constants, the flight path
x y

in the horizontal plane for the slowest dynamics is a straight

line. The straight line must Joint the horizontal projections

of the desired current and final conditions. In addition, since

H (tf) and Xv(tf) are zero,

XV (tf) cos + Xy V(tf) sin + £ (tf) - 0 .(3.47)

Eqs. 3.46 and 3.47 give

1 = -(tf) cos1 vf) (3.48)
X V1 (tf)

1 -(tf) sin;'-= (3.49)

y V1(tf)

The adjoint equation for XV is

1 1 1 1 1V I 1 +X1 =f Xx Cos + X y si MV 5V

1
a_ C (tf) XV 3D 1  1 t
V 1 (t) - 5V X~ 0 (350)

Eqs. 3.44 and 3.50 give the optimal altitude in slowest time-scale

approximation. This still requires the solution to a first-order

TPBVP. This requirement could be removed if the Hamiltonian was

not an explicit function of time.
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3.4.2 Altitude Dynamics

To solve for the optimization problem in the altitude

dynamics time scale, Xxt xy and XV can be used from the

previous solution. Since flight path angle dynamics are still

faster than altitude dynamics, setting * and y to zero we

get (variables in sltitude dynamics time scales are written

* with supercript "2")

2 = 0, L 2 =mg cos . (3.51)

The Hamiltonian can thus be modified to

2  1 1  2 1 1 1 2 1c x  Cosy cos + y Cosy sin

+ X2 V1 sin y2 + xi[(TD 2 )/m-g sin y2] + C . (3.52)

The adjoint equation X gives
y

u =o= -lVI sin y2 Cos 1  1 V1 sin y2 sin 1

Sx y

+ (X - g X ) cosY 2 = 0. (3.53)

C is not likely to be a function of y. Thus,

2 1 1
an2  Oh ( V 9 (354

C(tf) (3.54)

2The adjoint equation for x2 is

dX2  x 1  2
h D2 V D 2

dt- m j -3 Xh(tf) is free . (3.55)

*- 2 2(f
2 (tf) may be determined from the relationship that H (t
is zero. Thus, the optimal flight path angle may be determined

from (3.54) and (3.55).
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3.4.3 Flight Path Angle Dynamics

The approach to compute flight path angle dynamics has

already been solved. Reference [1] provides an approach to

direct the missile from an initial flight path to the desired

flight path angles (O,y). As has been shown previously, lift

is applied perpendicular to the plane containing the initial

and the desired velocity vector. The magnitude of the lift

is proportional to the square root of the angle through which

the flight path must be changed (see below).

3.5 ALTERNATE ENERGY STATE FORMULATION

The optimality equations and the corresponding simplifica-

tions have been obtained using the energy state to replace the

total speed state in the missile equations of motion. This

offers certain computational advantages as will be seen in the

optimality equations. With E replacing V, the state

equations are

x = V cos y cos * (3.56)

y = V cos y sin (3.57)

h = V sin y (3.58)

E = V(T-D)/mg (3.59)

= (L sin a)/mV cos y) (3.60)

y = (L cos a - wg cos y)/mV (3.61)

The performance index will be written as a combination of the

flight time and the energy loss during flight.

ftf E(tf)

J = (1-&) dt + E(3.62)

LIE is a normalizing factor and represents nominal energy loss

per unit time. General performance indices can also be studied.
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The Hamiltonian for this problem is

H X x V cos y cos 0 + xy V cos y sin$ + Xh V sin y

+ xE V(T-D)/mg + (X L sin a)/(mV cos y)

+ x (L cos a - mg cos y)/mV + (1 - (3.63)

The optimality equations are

x -= 0 (3.64)

xh = -H/ah Xh(tf) free (3.65)

"E = - x E(tf) = U/S0  (3.66)

x = - g (tf) = free (3.67)

y - 9H/y xy(tf) = free (3.68)

*The optimality equations are

3H AEV aD X sin a A cos a
-L - mg L mV cos +  mV (3.69)

H = L coso aX L sina
-" D--mVcos---m = 0 (3.70)

a MV Cos Y mV
or

tan = os (3.71)

Since the final time is free

H(tf) 0 (3.72)

vim Again a four time scale solution is sought. The ordering of the
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time scales is as follows:

x, y, E - slowest

h - slow

- fast

Autopilot fastest
Dynamics

3.5.1 Slowest Time Scale

= 1 =0

L= mg (3.73)

and

H1 = Xxlgcos *1 + Xy Visin 01 + A~lVl(T-D)/mg
1 1

+ (1 - (3.74)

X and X are constants. Optimal * and h are obtained

xl yl

from

H _Xy
.H"=- Xxl V1 sin 1 + Xy Vlcos *1 =0 => tan $ 1 (3.75)

Th [Xx Cos 01 + Xysin 01 + XEI(T-D)/mg][-g/V I]

(3.76)

mg 9h

Note that since V1 = 2g(E-h), 9Vl/h = -g/V1  (3.77)

H(tf) =o

gives

32



(X-Cos 01 + X sin 0)V(tf) + -v1 (tf)
x S 1 +  E0 mg [T(tf)-D(tf)]

+ (1-) = 0 (3.78)

or cos + X sin = [T(tf)-D(tf)] (1- )
(X (xCos 01 + Xylsin 0I )  (3.79

1 y1  E0mg V1 (tf)

Eqs. (3.75) and (3.79) give the solutions for X and XYl"

Nominally, a differential equation must be solved to obtain

E" Because the Hamiltonian is explicitly time dependent through

T and m the Hamiltonian is not constant throughout. We will
• use an approximation which will avoid the need to solve the

differential equation in the backward direction. The approxi-

* . mation consists of using average values of T and m in the

definition of the Hamiltonian. Thus,

X El VI(Tav-Di)

H1  X x VlC°S 01 + Xy V sin *1 +  + (1-)(3.80)1 J m avg

-i With this approximation

H 1 (t) = 0

Therefore,

* (Tav-Di) + 1-& T(tf)-Dl(tf)] + 1- (3.81)

E1 mavg V1  mavgE 0  V(tf)

Using Eq. (3.80), Eq. (3.76) becomes

XE V1
1 DD 0 (3.82)

V 2 mav g 3h
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(1 ([_t)(TavD1) + - V1 -3

V 21 1mavgE V1 (tf) - (3.81
K1

This equation may be solved to obtain the optimal altitude. Note

that the three adjoint variables are

Cos J[T(tf)-Dl(tf)] (1 (3.84)X - s E0mg+ Vl(tf)]

As [T(tf)-D1 (tf) ] (1 (3.85)
S- sin €1 E0mg + Vl(tf)]

= m~avg [(T(tf)-D1 (tf)] 1___
'iA1 = (Tav-D1) L E0 mg + Vl -tf)_

XE TaD ) E0 g+V 1 (tf) V 1  (3.86)

The two special cases corresponding to minimum time ( = 0) and

minimum energy loss (C = 1) are shown in Table 3-2. For the

minimum energy loss case, the drag is the lowest at the optimal

altitude.

The flight path direction in the horizontal plane is deter-

mined by the horizontal projection of the line which joins the

current missile position to the intended final missile position.

3.5.2 Altitude Dynamics
To solve for the altitude dynamics Xl, Xyl, and XE

x 1l 1
are used from the previous time frame. Since flight path angle

dynamics are still faster than altitude dynamics, setting

and y to zero, we get the following equilibrium conditions
4

U2 = 0 (3.87)

L 2 = mg cos Y2 (3.88)
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where the subscript '2' denotes variables in the altitude

dynamics. The corresponding Hamiltonian can be written as

H2 ~ ~ ~ Y 2=o yxi Vo lcs~+S 2c 2 cos y2 sin *1 + Xn V2 sin Y 2

+ XE V2 (T-D2 )/mg + (I-c) (3.89)

The optimal flight path angle in the vertical plane is

aH 2
a2 0 =-( XlCos 01 + Xsin 01 )V2sin Y2 + Xh V2cos Y2

(3.90)

Using Equation (3.26), we get

tan _Y2 = (Xcos 01 + Xsin(391)

Normally we would have to solve a differential equation to obtain

X hbecause T and m are explicit time functions. However, we

would again set T and m to their average values which gives

an additional equation:

H2 (t) = 0

(Xlcos 01 + Xylsin Yl)V2cos y2 + Xh 2V2sin Y2

(TavD2)
+ X V + (1-E) = 0 (3.92)

E2 m 9g
.1 +avg

4l Using Eq. (3.91) to eliminate Xh 2, we get

XE (TavD2)

(XX Icos 01 + Xy sin 0 1)sec Y2 + mg + 2 0 (3.93)

I
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Eq. (3.80) is rewritten as

XE (TavDI)

( lcos €i + Xysin €I ) +  + LvI 0 (3.94)

Subtracting Eq. (3.94) from Eq. (3.93)

1) (DI-D2 )

(Xlcos €I + X ylSin *I)(sec Y2-1) + mvg

(1- )(Vl-V 2 )
+ -V 1V 2  = 0 (3.95)

From Eq. (3.76) and Eq. (3.80) we can find one solution to E
E1

xE1  (1-C)g/V2

1 1
mavg V1 D1 /3h (3.96)

Therefore Eq. (3.95) is simplified toa

(Xx cos 01 + Xy sin 01 )(sec Y2 - 1) =

1 11

This equation gives a value of see Y2 . Y2  is positive if

I h2 < h, and is negative if h, < h2 . Note that if this equation

* solves out to a negative value of (sec Y2 -1), the desired

flight path angle is ±900 (this happens because Eq. (3.90) must

be modified when optimal Y2  is 900). Note that

(Xx 1cos 1 + X y s in Y1) is obtained from Eq. (3.84) and (3.85)

xCos 0 1 + X 1sin + 1 [[,tD f) (3.98)xi +  ln-mg + 3(tf)7
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3.5.3 Attitude Dynamics

Given desired values of the flight path angles and the

current values of flight path angles, the lift vector and its

orientation can be computed using techniques developed previously

[8]. We shall summarize them here since they form an important

part of the overall guidance law. The orientations of the

current velocity vector and the desired velocity vector are

vc = [cos y cos *, cos y sin *, sin y] (3.99)

vd = [cos y2o s s 1, cos sin 01, sin Y2 ] (3.100)

The total angle through which the flight path must be changed is

given by

= arcos (Vc'Vd ) (3.101)

The lift vector net of gravity must be perpendicular to vc,

in the plane containing vc and vd. The value of the lift

depends on AV and the variation of drag with lift. It was

shown previously that the lift is of the form

L % K /77 (3.102)

K may depend on dynamic pressure and time-to-go. The value

of K may be derived from the results of [8].

3.6 ALGORITHM

The algorithm involves the following steps:

1. Based on current missile state, compute y, $,
density, drag and total energy.

2. Computer desired 0, based on the line joining
the current missile location in the horizontal and
the desired missile location at the end of the
midcourse phase.
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3. Based on the drag, compute an approximate value of

Vl(tf), D(tf) and time-to-go. Time-to-go is

used to determine Tav and mav.

4. Solve Eq. (3.83) for the optimal altitude. Eqs.
(3.84), (3.85) and (3.86) give Xl, y and XE.

y1
5. Solve Eq. (3.97) for Y2 " Note that for computa-

tional advantages (sec Y2 -1) should be approxi-

mated as

S2 sin2 (Y2/2)

Cos Y2

particularly when Y2 is small.

6. Compute vc, vd and A* using Eqs. (3.99) to

(3.101). A numerically desirable way to compute
04J uses the formula

- 2 arcsin 1 (vc-vd)

The vertical bars represent the 2-norm of a matrix.
*Compute the desired lift using Eq. (3.102).

7. The orientation of the lift vector is given by
Vc and Vd.

8. Add the component of gravity perpendicular to the
velocity vector to the lift computed in steps
(3.59) and (3.60).

p.
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SECTION 4

TARGET DYNAMICS ESTIMATION AND ADAPTIVE TRAJECTORY TRACKINGn

4.1 EQUATIONS OF MOTION

For state estimation, we will describe the relative dynamics

of the target with respect to the missile in the inertial axis

system. If x is the vector of relative position, v t  and vm

are vectors of target and missile velocity, respectively, and

at and am are the corresponding acceleration vectors, we have

4, 4

X t - vM , (4.1)

v =a t  (4.2)

= v. (4.3)

a may be measured by on-board missile sensors. For state
00 m

estimation to be used in the missile guidance law development,

the target acceleration must be modeled. Behavior of target

acceleration components is usually different along target longi-

tudinal and lateral directions. To model these components

separately, the targets's orientation angle in the inertial axi:

system must be estimated. Since it is difficult to estimate

target orientation angles, it is desirable to model the target

acceleration components in the same manner in all directions.

One often-used formulation is a random walk model:

a t = n (4.4)

where r is a vector of white Gaussian noise sources. Note
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that the missile target dynamic model in the inertial axis system

is linear.

Nonlinearities in the state estimator arise from the measure-

ments. Passive seekers measure pitch and yaw gimbal angles p

and e with respect to the missile body frame (m refers to
y

quantities in the missile frame)

ep arctan (Zm/Xm) (4.5)m m:
ey - arctan (ym/i+ m  . (4.6)

The inertial line-of-sight may also be considered as potential

measurements. The range measurement is

R = (x2 + + z2) (47)R=( m m "

Since the measurement model is nonlinear, an extended Kalman

filter could be used to estimate states. The covariance equa-

tions need to be propagated in parallel with the estimated state

equations. Assuming that the missile velocity components may be

determined by open-loop integration of missile acceleration

components, a nine-state Kalman filter will be required to esti-

mate relative position, target velocity and target acceleration.

The covariance equations will place significant computation

requirements on the on-line processor. The time-scale separation

approach will attempt to simplify this problem.

4.2 TIME-SCALE SEPARATION FOR STATE ESTIMATION

In the state estimator, the time-scale separation methods

* will consider the position as the slowest states, followed by

target velocity and target acceleration.

Since the measurements are all in the slowest time frame,

we will attempt estimation in that time frame first. The esti-

mator equations should be of the form (the superscript '"'
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denotes estimate of a quantity):

A A

4I 4) 4+4
SV Vt - Vm + K x(y - h(x)) , (4.8)

where the measurements are represented by

y = h() (4.9)

4- 4.

The gain Kx  is computed assuming vt and v doe not change

significantly during this time period.

The variables in the next faster time scale will be esti-

mated by considering a measurement of vt based on the position

equation. One possible model for pseudo-velocity measurement is

4. 4

.v =YX + Vm

= Kx(Y - h('X)) + 't (4.10)

The estimator for target velocity components then becomes

4 4

Vt = at + K v(yv - Vt)

4.= at + Kv Kx (y - h(')) (4.11)

Ki In the missile guidance problem, noisy measurements of the

target position components are available to the missile in the

Vform of look angles and posibly range. From these measurements

the trajectory of the target is to be estimated. Further, this

trajectory must be updated with each new measurement. It appears

feasible to represent the target acceleration as an auto-regres-

sive (AR) model. Under the assumption that the measurement noise

has a rational spectrum, it can be shown that the corresponding

model to be fitted to the noisy acceleration samples, derived

from the position measurements, is an auto-regressive moving-
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average (ARMA) model whose denominator coefficients are the

desired parameters. These parameters can be estimated using

recursive maximum likelihood (RML) or recursive prediction error

(RPE) algorithms, which are described in Section 4.3. Once the

model parameters have been estimated, the target position can be

predicted in one of two ways: 1) Estimate the acceleration from

the derived model and determine the position estimate by inte-

grating twice, and 2) The target position satisfies an AR model

whose AR coefficients can be computed from the above estimated

coefficients. The target position can then be predicted using

these AR coefficients.

The estimated target state variables serve as input to the

algorithm of Section 3, which computes the optimal missile state

variables. These nominal values are used by an adaptive auto-

pilot as a reference; the autopilot provides actual control

signals to the missile control surfaces, in order to track the

reference missile trajectory obtained from the optimal control

solution. A recursive lattice algorithm for implementing the

adaptive autopilot is described in Section 4.4.

4.3 RECURSIVE MAXIMUM LIKELIHOOD (RML) ARMA IDENTIFICATION

Let the observed time series be modeled as

A(q- 1Y C(q- ek (4.12)

where

A(q - 1) - 1 + alq-1 + + aLqL

(4.13)

C(q -1) f 1 + c1q - + ... + cNq -

with q-1 as the delay operator

-1
q Yk Yk-1
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The recursive maximum likelihood (RUL) algorithm computes
an estimate 6 of the model parameter vector B

6T . (a a. aL c 1  ".. cL) (4.14)

by the following set of recursions:

A A

ek~e1+Pk~kek(4.15)

T

1+'k "k-1 k

where

:= ~kTC k Yk ek-i Yk
(4.16)

yT
k I-k-1 .. 7k-L Ck-1 .. kN

k Yk/C(q)

The Recursive Prediction Error (RPE) algorithm uses modi-
*fied e. y9 ~ variables. The prediction error e k is

replaced by the a posteriori residual

Ek OTk 0  
(4.17)

* where

Yk Iy- '-k-L ' k-i lkN (4.18)

The variable lk is also modified to

Wk : -yk-1 -yk-L9 ak-1 £k-L] (4.19)
where

C k Ck/C(q-) (4.20)

* A detailed discussion of both algorithms is provided in Appendix
Id B.
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4.4 ADAPTIVE LATTICE ALGORITHM FOR TRAJECTORY TRACKING

The missile trajectory has to be adaptively controlled by

, the autopilot to track the nominal trajectory, which is itself

K adaptively updated (at a lower rate) according to the changes

in target trajectory estimates. An algorithm to compute the

control inputs that achieve this objective is described in

Appendix D. The main part of the algorithm (everything except

step V in the Appendix) is devoted to establish the exact input-

output relationship of the missile and to update this relation-

ship as the missile parameters change. The lattice algorithm

described in Appendix D consists of a cascade connection of

identical lattice modules (Figure 4-1). The matrix computations

performed by each section can be transformed into a set of inter-

related scalar recursions, so that each multichannel module of

Figure 4-1 is replaced by a square array of single-channel lattice

cells (Figure 4-2). Each of these cells performs a set of scalar

computations summarized in Table 4-1. The modular architecture

of the algorithm not only makes it perfectly suitable for VLSI

implementation but also provides it with a better numerical

behavior and higher throughput rate than any direct implementation

of the recursions of Appendix D on a general purpose computer.

4
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e - forward residuals
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Table 4-1 Recursions for a Single-Channel Lattice Cell

-*

er

K =K + +11
s

e.e.
Re = Re + 11

qS
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i *
r. r.
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SECTION 5

SUMMARY

This section summarizes the work performed under this

research effort. Plans for future work are also presented.

U

5.1 ADVANCED GUIDANCE LAWS

Proportional navigation (pronav) guidance, which has been

highly successful in the past, is not likely to meet future
missile guidance requirements; for example, in an anti-tactical

ballistic missile (ATBM) scenario. A singular perturbation

approximation to modern control theory provides much high
.. accuracy than pronav. The mathematical formulation of the

solution is significantly simplified by introducing separation
of time scales. The resulting algorithm is well suited for
on-board real-time implementation.

5.2 ADAPTIVE TARGET STATE ESTIMATION AND TRACKING

Efficient and fast algorithms for adaptive target state

estimation and tracking have been developed. The recursive
maximum likelihood (RML) algorithm for fitting an auto-regressive

moving-average (ARMA) model to noisy target position measurements
exhibits fast convergence and is unbiased in the presence of

measurement noise. The adaptive multichannel lattice algorithm

for trajectory tracking has excellent numerical behavior, fast

convergence and a modular structure that makes it perfectly

suitable for parallel processing implementation.

51
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[5.3 FUTURE RESEARCH

The following areas need further study:

1. Real-time implementation of the advanced guidance
law algorithm and evaluation on complete ATBM
simulation,

2. Application of the recursive maximum likelihood
(RML) algorithm to target trajectory estimation,

3. Application of the recursive adaptive lattice-form
controller to design a robust adaptive autopilot
for medium-range surface-to-air missiles, and

4. Architectures for an integrated, parallel, multi-
microprocessor implementation of the missile
guidance and control system.

5
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APPENDIX A

PROPORTIONAL NAVIGATION GUIDANCE

1. EQUATIONS

I With reference to Figure 1, the engagement dynamics in two

dimensions are [2]

ra vt sin *.t - vm sin $m C(to) 0 0 'l)

r= vt cos t vm cos m ' r(t) = r 0  (2)

By differentiating the first equation, adding a times the second

equation to it, we get

rd+2;;+cos Om am = -V sin- m +vtcos t 6 t+vt sin

;(t) = (3)

Note that am- Vm m . In this section, we consider missiles with

constant speed, and targets with no lateral acceleration capabili-

ties (significant further deterioration occurs if these assumptions

do not hold). The change in target speed is included as follows:

LA

L_ ~~~~: ; .' "T°  _

Figure 1. Definitions of the Kinematic Variables
for the Relative Motion Between the Missile M

and the Target T 55



rd+2 ;+cos a sin 0 (4)m m t

The commanded acceleration for pronav guidance law is of the
form

la~ -nA r; (5)mc n CosOm'

An is the navigation gain. If the missile dynamics is negligible,
i.e., am -ainc. the closed-loop dynamics is

r8 + (2- A s~- tin 4t

n

which is stable as long as A. 2 (note that i~is negative).

Missile dynamics, approximated by a second-order system, can

cause instabilities

Em + 2 En 1wm am + wm am w a . (6)

* A pronav guidance schematic flowchart is shown in Figure 2. The

* characteristic polynomial of the closed-loop system is

53+(i~2 ~w~s. ~ ~iwm~2)s + w2(2A 7

K s (rEw
+2 W( 7
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2. ANALYSIS OF STABILITY

The guidance law is stable, i.e., the polynomial of Eq. 7

has roots with negative real parts, if

> 1,
r M

am m

rr
( 2a+ /a 1 WM

r

where

aA+ (8)

Note that r is nominally negative and -r/r is the time-to-go if

there are no maneuvers. If An  exceeds two, the second and the

third condition are always less restrictive than the last condition.

Therefore, conditions for stability are

An > 2 ,
9(9)

tgo > 2( a )w

Note that the pronav drives the missile unstable prior to impact

for all values of damping ratio. A root locus plot with A is

shown in Figure 3 to illustrate the stability problem. Note that

An > 2 to stabilize the kinematic pole. The point where the complex

pole pair crosses the imaginary axis depends on time-to-go. As

the time-to-go decreases, this crossing occurs at smaller and

smaller An
n' 57
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Figure 3. Root Locus with An

Figure 4 shows stability regions for various 
pronav gains

and two values of missile damping. The higher the pronav gain,

the earlier the missile goes unstable.

3. SUMMARY

When the target has high acceleration 
components the terminal

instability of pronav causes large miss 
distances. The pronav is

also too slow to respond to large errors 
when the range is large,

causing missile saturation prior to impact.
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APPENDIX B

A QUASI-NEWTON ALGORITHM FOR ML ESTIMATION

OF ARMA MODEL PARAMETERS

Let the observed time series {y(t), t = 0, 1, ... } be

low modelled as

A(q 1) y(t) = C(q - ) e(t) (1)

where

A(q- ) = 1 + aq 1 +... + aLq-L

C(q) = 1+ c1 q-1 + + c(2

-1
with q1 as the delay operator

q y(t) = y(t-1)

and e(t) is a sequence of zero mean white noise samples.

Rewriting (1) as

Y(t) = [1 - A( ) Q1 y(t) + e(t) (3)
C(q 1)

* the one-step ahead predictor y(tle) is given by

we) C(q_l) y(t) (4)

where is the parameter vector as defined in (6).
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From (3) and (4), the prediction error E(t,5) is

E(t,S) = y(t) -y(tle) = ,(t,6) (5)

where

eT = (a1 ... aL c1 ... CN) (6)

T,"i~~~~ T(t,B) =(-y(t-1) ..- y(t-L) c(t-l,6).. (-,)

The off-line maximum likelihood (ML) method of estimating

the parameter vector e corresponds to minimizing the function

t

J y E* c(S'e) (7)

The above minimization problem is non-linear in e and hence

an explicit solution is not possible. Therefore, a numerical

search procedure based on a Quasi-Newton method will be used to

*find e.
Differentiating J with respect to 6 gives

t

VJ = E(s,e) VC(s,e) (8)

where VJ and Vc(s,e) denote the gradient vector of J and

c(s,a), respectively, with respect to e. Differentiating once

again gives

t

V2J = [VE(spe)vTC(s'e) + V2 C(se)C(se)] (9)

From the expression (5),

Vc(s,e) - Vy(sle) - -(s,8) (10)
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where ,(se' denotes the gradient vector of the prediction

* The Hessian, 72 J, will now be approximated. At the true

* minimum of (8), the second term of (9) can be shown to be zero.

-* Since the true Hessian is more important close to the true mini-

mum than elsewhere, we approximate the Hessian by the first term

Iof (9) which, in view of (10), becomes

i : V~ %% ( s,. (s , 8) ( 1

Further approximations are needed in order to obtain a recursive

Quasi-Newton algorithm from (8) and (11). Computation of e(t,8)

requires all the data up to t. This computation is approximated

by using the latest values of the data and the parameter estimates,

Land denote the correponding (t,e), 11(t,e) and E(t,e) by

c(t), (t) and e(t), respectively. The Quasi-Newton update

of the parameter vector is then given by:

e(t) 6 e(t-1) + [. (s) T(s) P(t) £(t) (12)

where we approximated VJ by ,(t)E(t). Note that the effect

of the above approximations on the asymptotic values of the

parameter estimates is negligible if the roots of C(z) lie

* inside the unit circle.

Now consider the computation of the gradient vector of the

prediction. From (4),

y(t) = 1 -~_ 1)1 y(t)
which gives

Da y(t) =- ^(t-i) (t-i) (13)
C(q -I )
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and

DY(t) = (t-i)
;c. -i-i (14)

1 C (q )

Combining (3) and (14), we obtain

Vy~t(t) t1=~t (15)
C(q 1

Y(t) and C~t are the filtered variables. The vector t
can be defined in terms of these variables as

T

In computing 4,(t), the estimated value of e at t-1, e(t-1),
is used. It is then easy to see that

Y(t) =y(t) - c 1 (t)y'(t-1) ... -cN(t) 'y(t-N) (17)

Using the matrix-inversion lemma, a recursive version for

(2) can be obtained. The resulting algorithm follows:

q(t) =e(t-1) + P(t) 4(t) C(t)

T
P(t) =p(t-1) - p(t-1) T P(t) 41 (t) P(t-1) (9

e T

E(t) =y(t) - eT(tl1) C(t)

AT A A A

e t)=(a 1(t) ... aL(t) c1 (t) ... cN(t)

(t) and iF(t) are as defined in (6) and (16), respectively. This
algorithm is called the recursive maximum likelihood (RML) method.



Note here that the latest error term contained in C(t) is

;-(t-1), and the latest filtered error in .(t) is E(t-1)

Since the estimate e(t-1), available at the beginning of the

t-th sampling interval, facilitates the computation of the a

posteriori residual T(t-1), defined as

, (t-1) -- y(t-l) - 9T(t-1) (t-1) ,(20)

the residuals can be used in place of the prediction errors in

C(t) and (t). Thus, the modified forms of C(t) and (t)

are given by

TT(t) =f (-y(t-1) ..- y(t-L) E-Ct-1) ... E(t-N))

(21)
T(t) -f (-y(t-1) ..- y(t-L) E(t-1) ... F-(t-N))

where -(t) = c(t)/C(q- 1). The algorithm (19) with (t) and

* .(t) as defined in (21) is called the recursive prediction error

method (RPEM). The difference between (6), (16), and (21) re-

flects in the transient behavior of the RML method and the RPEM;

however, their asymptotic behavior is identical.
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APPENDIX C

THE ADAPTIVE LEAST-SQUARES PROBLEM

Exact-least-squares lattice algorithms provide recursive

solutions to the following adaptive least squares problem:

Given two sequences of multichannel measurements

y(O), y(1),...

and
x(0), x(1),...

find a linear estimate of x(k) based on m previous

measurements of y , namely

m= (k) :=_ hiy(k-i)

such that the exponentially weighted cost function
t xt - k 2

cm, := 1x(k)-i(k)j2t k=O

is minimized.

The optimal solution to this problem, is a function of m,X, t

and also of the data y(k), x(k). Since it is customary in

adaptive applications to solve the problem for several values of

m and t , the dependence of the solution upon these parameters

will be indicated explicitly by introducing the notation

h m

i,t

for the solution that minimizes Cm ' The exponential weightt "

- is usually chosen in the range 0.9 < X < 1.0.
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Adaptive lattice algorithms provide solutions which are

recursive both in the parameter t ("time") and in the parameter

m ("order"). These algorithms are based, consequently, on two

update formulas: an order-update, which relates the solution

hm - 1 to h m and a time-update, which relates h m to
it i,t ' , t-1

h These update formulas can be expressed either in terms ofhi,t •

the residuals
Emt M = x(t) - T y i (hm

1=1 i,t

or in terms of the prediction-errors

mE(P) := x(t) - hm  y(t-i) (2)
i= 1

The derivation of the time- and order-update formulas is based

upon a geometric approach which is described in the sequel.

Define the rectangular matrices

-Yt := [y(t), y(t-1),..., y(1 , y(O), 0 ... 03
~(3)
xt  := x(t), x(t-l),..., x(l), x(0), 0 ... 0]

The number of rows in each matrix is determined by the number of

channels of the corresponding signal. The length of each row

(say N ) is chosen large enough to guarantee the appearance of

zero columns of the end of xt, Yt for every t in consideration.

The rows of xt,Y t  are therefore elements (vectors) in the linear
4

space of row vectors of length N Defining an inner product for

every two row vectors of length N,

<a,b> :aAb*

A : diag { i; 0 < i < N-l} (4)

where the asterisk * denotes the Hermitian transpose, we obtain

a (weighted) Euclidean space. A collection of several vectors in

this space, say x 1 ,x 2 ,.. . ,Xk , written formally as a column

I
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.x

X 2

X (5)

xk

will* be called a vector array (VA). The (inner) product of two

VAs X,Y is defined as the matrix

<X,Y> := [<xi,yi> ]  (6)

whose (i,j) element is <xi ,yi>, the inner product of the

i-th vector in X with the j-th vector in Y .

The cost function C m' can be expressed in terms of the}t

. VAs xt,Y t  as

m m
cm ' X = tr < x x xt~t - hiYt-i I- hix-i

i=l i=l

The solution h't that minimizes the cost function is obtained,i,t
by projecting the VA x t  (i.e., projecting every vector in xt )

on the subspace spanned by all the vectors contained in the VAs

Ytt ' '' Yt-m * Since projections play a central role in

solving the least squares problem, it will be convenient to in-
troduce a shorthand notation. Let xu denote the residual ob-

tained by subtracting from every vector xi  in the VA X , the

projection of xi  on the subspace spanned by the vectors con-

tained in U . Then the minimal cost can therefore be expressed

as

min C m ' = tr m m

(x. h m y (7)

_m,t (xt)(Y Ytm xt - h't (t-i

where cm t  is the residual of xt  after removing its projec-

tion on span {yt-I Yt-m "

The order- and time-update formulas of exact-least-squares

lattice algorithms involve only the first column of the matrix
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S ; namely,m,t

SCm(t) = <CMo oT> (8)

where

• ? := [1, 0, 0.,o (9)

Notice that c m(t) is precisely the multichannel residual defined

by (1). The prediction-error ePm(t) , defined by (2), is,
similarly, the first column of the matrix

m

m :x - hit-_1 Yt-i (10)

which seems to have no geometric interpretation in terms of

projections. If the columns of this matrix are shifted one step

to the left, and a column of zeros is introduced at the extreme

right, the resulting matrix is
m h

t-1 i t-1i Yt-l-i Cmnt-1
L':" i=1

which is, of course, the residual of projecting xt on span

{Yt-2,...,yt-m-1) "Denoting the left-shift on row vectors by

D we have

Dyt = y

t-Dx t W x t_1  (

and as a consequence of our last argument

UPm(t) <CP ,

m mt
m-. (12)

m,t mt_1

This identity can be used to derive order- and time-update for-

mulas in terms of prediction-errors rather than residuals.
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APPENDIX D

ADAPTIVE CONTROL AND PREDICTION USING LATTICE STRUCTURES

I\
A large number of adaptive control and prediction algorithms

.,an be described exactly as a lattice form implementation that

requires only O(M) computations per time update for an Mth order

model. The well-known advantages of lattice form implementation

in terms of numerical stability and simultaneous availability of

lower order models become available for algorithms with known,

desirable asymptotic convergence properties.

For the ARMAX (Autoregressive Moving Average with Exogenous

Inputs) models, current state-of-the-art adaptive prediction

either risks convergence to a local maxima of the likelihood

function, or requires a Strict Positive Real condition for con-

vergence. Over-parameterization of the predictor can be used

to ensure that neither of these two problems would arise nor

would the convergence rate reduce substantially. This is attrac-

tive only because of the O(M) computational complexity of the

algorithm.

INTRODUCTION

Consider a linear system with p inputs, p outputs described

by:
A(q-1)yt q -1B(q-1)ut + C(q-1)vt (I)

q 1 = delay operator in discrete-time. {yt ) , {ut), and {vt}

denote, respectively, the output, the input and the noise process,

each of dimension pxl.-1 -1

A(q 1 )I + Ajq + + Anq

C(q- 1 1 + + Cn q
-1-1 Bm-m

B(q 1  B 0 + Blqq + ... +B q

det (B0 ) 0 0
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Objective of the adaptive controller is to make the output follow

a reference signal Yreft in the minimum-variance sense. Viz.

t+ 1 - YrefttutYref t1Yt1,ut1Yreft,..

Equation (I) can be rewritten in its prediction error form as

1 .1
C(q-1){(yt+ 1 - Yreft ) 

- vt+ 1J = {B(q- )ut +
t+1

+ (C(q) - A(q-)) (Yt - Yref) -A(q-)Y reft+i1

= 0 t - Yref
t+1

~where
T T )T )Twh= [ut Ut_ ''(Yt-tref T '(Yt-1-reft

T T T
Yref I Yreft'

t t-1

Let r = max((n-1),m), dim = 3.(r+l)'pxl and e0  is a matrix

of coefficients with dimension = p x dim %t e0  may have zero

elements. Model order M = r + 1.

e0 = [BO,BI,B 2,...,Br, (C1 -Al),(C 2 -A2 ),.', (Cr+i-Ar+i),

- A,, - A2, .. A, -Ar+i]

Recursive least squares algorithm for parameter update in the

regression form

(Yt +ref + reft+i e= t . (ID)

is used to give parameter estimate et+ 1 .

The parameter estimate is used in turn to compute the control

u t  in the following manner:

Choose u such that - Yref = 0 (CONTROL)
t 't t Ye ft +1
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Such a choice of ut gives reference following in the minimum-

variance sense.

ID equations are usually implemented as:

^ A T -1-. t = t_ 1 + Pt-l~t-l(x+ qbt_ 1 t_lOt-1_)-(y t 8t_l~t_l )

" Pt - 1 - 1 t- 1 t-1 1
t t-1 X+ T_iPt l t

Control ut  is computed by solving the linear set of equations

tt- Yref t+ =0.

Note that this involves inversion of a pxp matrix consisting of
the first pxp matrix of et

This algorithm of (1) finding a linear least squares esti-
mate in a linear regression model and (2) then computing the

control to make the prediction based on the current parameter

estimates equal to some known value, lies at the heart of a large
number of "successful" adaptive control algorithms. The same

basic algorithm is also used for recursive prediction algorithms.

Lattice Form Algorithm

Exact implementation of a recursive least-squares algorithm
can be done using the joint-process ladder form with pre-window

ing. The parameter estimate is in terms of the reflection co-
efficients and not in terms of e. The reflection coefficients

are used to compute the prediction and efficiently obtain the

control ut to make the predicted value equal to the desired

value.

The proposed procedure involves p+1 iterations of computing

prediction of (yt+-Yref t+) for ut 0 0, el, e2 , ... , ep. ei
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-T

denotes the ith Euclidean basis vector [0 0 . . 1 . 0 in EP .

Each such prediction involves 0(M) operations. The set of

linear affine equations in ut  is then solved in 0(p 3) operations

to obtain ut. The total operation count thus remains 0(M), i.e.,

linear in the model order. Note that since we are using the

ladder form merely to implement the exact equivalent of the algo-

rithm using explicit estimation of e, the convergence properties
and stability property of the original algorithm continues to

hold for the ladder case. Let us describe the algorithm in detail

below:

(I) Initialize at time t -0; n- 0, ... , M-1

Rne (0) =61

n" Rnr (-1) = 61

SFn (0) = 0

r (0) = 0n

Yn (0) ; 0

ne
(I) At time t we have in memory [Re (t-l)], Fn (t-1),

FY(t-1), yn(t), [Rnr(t-2)], rn(t-1), KY(t-1)
n n n n n

Compute: n - 0, ... , M-1
*(Remark on notation: The subscript n denotes the lattice

stage. To avoid confusion, the time parameter t is now

* appearing in ().)

= T R-rK.' K(t-1) F Fn(t-1) [ Rr (t-2)]

:*-)=(t-t) = n -l)[RneCt-i)]

Rn r (t-2)r (t-1)rT (t-l)Rr (t- 2 )  1
-rR- n n n n

Rn+C(t) B)=n(t) + (1-an(t))2r (t-)Rnr (-l)r n(t-)

(t) 0
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(III) Measurement y(t) is used

en(t) = y(t) - Yn(t) n = 0, M-1

FY(t) = FY(t-1) + (1-a (t))r (t-l)nTW
Fn n n(t)

KY(t) = FY(t)[Rnr(t-1)]n n n
(IV) Let u(t) = e i = i i = 1, ... , p

1 L
Let Ou(t) = 0

Let ix(t) = [iu(t)T, yT(t), Yref(t+l)]T

Compute for i = 1, ... , p; n = 1, ... , M

ien (t) = ien- (t) + Kni (t-1) irni(t-1)

irn (t) = ir 1 (t-1) + Kn_ (t-1) ien(t)

+ny () = t + l ) - KY ) rn Yn-1~i n K 1  n-1t
i i i

et) (t) x(t)

giving p predictions YM(t+l)

(V) Solve the set of linear equations defined by

Au(t) = b

*' where

b = Yref(t+l) - yM(t+1)

and
column i of A = (iyn(t+l) - b)

This choice of u(t) will give
A

YM(t+l) = Yref(t+l) as desired.

(VI) Apply control u(t).
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Use x(t) formed by 'u(t), y(t), Yref (t) and compute

forn-a .,M

e0 (t) r r0 (t) - X(t)

r (t) -r,_ 1 (t-1) + K* (-~

A

rVI Ret ne (t-i)e ntWeTn(t)Re t-1)

I-n n n

F~Ct = ( t-i) + (1-&8 (t))r (t-1)e T(t)

Go to step II
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